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As part of an ongoing collaboration the authors worked together at LANL during the summer of 2011 
under the DOE Faculty and Student Team (FaST) program. Here we briefly summarize one of the 
summer’s efforts, notably enabled by the availability of the CCS-7 experimental cluster Darwin. This 
work contributed to CCS-7 research into common runtime elements for programming models for 
increasingly parallel scientific applications and computing platforms [1].

Data-intensive scientific computing applications are producing 
increasingly high Input/Output (I/O) demands on the storage 

devices of high-performance computing systems. Request concurrency, 
or the number of processes concurrently issuing requests, can be 
very high at data servers that are serving requests from applications 
running on a large-scale cluster. Besides the potentially large volume 
of requested data, this concurrency can significantly compromise the 
efficiency of a hard-disk-based storage system: data on a disk that are 
requested by different processes or programs are usually spatially 
separated on the disk, and concurrently accessing them can cause the 
disk heads to frequently seek from track to track, potentially delivering 
an I/O throughput an order of magnitude lower (or worse) than that for 
sequential disk access.

The emerging solid state drive (SSD) is largely unaffected by random 
access because it is, effectively, a uniform memory access device. 
However, it is currently not economical in high-performance computing 
for use as the main storage in a large-scale installation. More 

cost-effective and practical options are either to use an SSD as buffer 
cache between main (dynamic random-access memory, DRAM) memory 
and the hard disk and exploit workloads’ locality for data caching, or 
use SSD with a hard disk to form a hybrid storage device such that 
frequently accessed data is stored on the SSD.

These schemes for SSD usage, however, do not effectively address the 
problem of concurrent requests from data-intensive parallel programs. 
First, the data accessed in a single run of such a program can be larger 
than the capacity of the SSD. When a program processes a large data 
set, data are rarely accessed multiple times from the disk, and the 
accesses therefore exhibit weak temporal locality, which is hard to 
exploit for effective caching by a relatively small SSD. Second, requests 
to a disk are usually interleaved from different processes of one or 
multiple programs. Most existing SSD-based schemes exploit spatial 
locality, that is, they attempt placement of randomly accessed data on 
the SSD such that the hard disk serves requests of sequential, or at 
least well-ordered, data. However, when the request concurrency is 
high, it is highly likely that most requests from different processes will 
be presented to the disk as random access and will need to be handled 
by the SSD. This would overwhelm the SSD as a cache, or as a small 
storage device for random data, and make these schemes ineffective.

In the operating system, the I/O scheduler is the last opportunity to 
exploit spatial locality in the presence of high request concurrency. 
For example, CFQ, the default Linux disk scheduler, reduces random 
data accesses by merging and sorting outstanding requests according 
to their logical block addresses (LBA). Outstanding requests are kept 
in a data structure called a dispatch queue. The larger the queue, the 
more requests can be collected for sorting and the greater the chance to 

Fig. 1. I/O throughput of a data server 
running IOzone with (a) 128 threads; 
and, (b) 256 threads. In each figure 
I/O throughputs with differing dispatch 
queue sizes and differing data access 
patterns are shown.
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exploit spatial locality. The default queue depth in Linux’s 
CFQ is 128.

We started by investigating the effect of simply increasing 
queue size on I/O performance in the presence of request 
concurrency by running IOzone, a commonly used file 
system benchmark, to generate a variety of file operations 
with varying queue size on a data server running Linux 
with CFQ to access data on a hard disk. Figure 1 shows I/O 
throughputs reported by the benchmark for access patterns 
Sequential Read/Write, Reverse Read, and Random Read/
Write, with queue sizes 128 and 8192, with either 128 
threads (Fig. 1a) or 256 threads (Fig. 1b).

This investigation showed that increasing queue size can 
significantly improve performance for Sequential Read/
Write and Reverse Read. When the queue size is increased 
to 8192 the throughputs are significantly increased by 
42% to 650%. This demonstrates that a large queue can 
effectively recover spatial locality if it exists in requests 
from the same thread. However, when individual threads 
issue fully random requests, the I/O throughputs are very 
low and the improvements made by the increased queue 
size are also small. This shows that random requests are at 
best difficult to schedule for efficient service by hard disk.

While increasing the size of the dispatch queue in memory 
can improve access locality for higher disk efficiency, by 
itself the approach has limitations. First, having a large 
queue would allow many write requests to be outstanding 
in volatile DRAM memory, running the risk of losing a 
large amount of data where frequent system failures are 
expected to be the norm. Second, although a long queue 
usually improves throughput, it can allow requests to 
remain in the queue for an extended period of time without 
being completed, which may result in excessive response 
times for those requests—for applications with strict 
quality of service (QoS) requirements a long queue can be 
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Fig. 2. Accessed locations when running ior-mpi-
io using read requests in a sampled one-second 
execution period. (a) The locations are on the 
hard disk and the stock system is used. (b) The 
locations are on the hard disk and the system with 
iTransformer. (c) The locations are on the SSD 
and the system with iTransformer.

problematic. Third, as we showed in the experiments, simply increasing 
the queue size may not be sufficient, especially for addressing the issue 
of concurrency among streams of random requests.

Our design started with extending the scheduler’s dispatch queue using 
SSD to hold the extension. Various algorithmic techniques were devised 
to overcome all of the aforementioned limitations. Our implementation of 
this scheduling architecture and the scheduling algorithm, collectively 
called iTransformer, is as a stand-alone Linux kernel module. The 
implementation is transparent to the software above the generic block 
layer in the kernel memory hierarchy and is therefore portable across 
different parallel file systems. Our evaluation of iTransformer was 
performed on the CSS-7 Darwin Cluster with a suite of representative 
benchmarks. We used 48 processes per node (one process per core on 
the DL585 nodes), one SSD per node, and the PVFS2 parallel virtual file 
system. iTransformer significantly reduced random access of the hard 
disks and increased I/O throughput of the storage system by up to three 
times and 35% on average, as compared to the stock system, for the 
benchmarks, using a mere 8 GB of each SSD. Figure 2 gives an example 
of how accesses are serialized to hard disk.


